The purpose of this study was to compare the in vitro activity of BPR to CTR and CXM against blood and respiratory SPN with various penicillin and multiresistant - resistant phenotypes.

INTRODUCTION

Streptococcus pneumoniae is an important cause of both invasive and respiratory infections in the community and, in the hospital, is pneumonia, bacteremia, meningitis, and meningococcal meningitis. The increasing prevalence of penicillin-resistant SPN is of concern because of the significant clinical impact of treatment failure. The increasing prevalence of SPN is a global concern, with a recent increase in penicillin-resistant SPN.

Conclusions: Susceptibility testing was performed using the Etest broth dilution method with the following antibiotic agents: amoxicillin, amoxicillin-clavulanate, cefuroxime, and ceftriaxone. All isolates were resistant to penicillin at a concentration of 8 μg/ml.

ACKNOWLEDGEMENTS

Funding for the CANWARD study was provided by the University of Manitoba, Health Sciences Centre Winnipeg, Manitoba, Canada. No competing interests were declared. The authors would like to thank the participating clinicians and the patients who participated in the study.

Table 1. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Disk Diffusion (μg)</th>
<th>% Sensitivity</th>
<th>% Intermediate</th>
<th>% Resistant</th>
<th>% Multiresistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceftriaxone</td>
<td>25.5</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>25.5</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bacteriophage</td>
<td>25.5</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 1. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 2. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 3. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 4. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 5. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 6. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 7. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 8. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 9. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 10. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 11. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 12. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 13. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 14. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 15. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 16. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 17. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 18. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 19. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 20. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 21. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 22. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 23. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 24. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 25. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 26. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 27. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 28. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 29. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 30. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 31. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 32. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 33. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 34. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 35. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 36. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 37. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 38. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 39. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.

Figure 40. In vitro activity of BPR vs. comparators against blood and respiratory SPN with various penicillin and multidrug-resistant phenotypes.